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Fluid dynamics
• Linear Momentum Equation
• Bernoulli Equation 
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Recap
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Reynolds transport theorem (RTT) for a fixed, nondeforming control volume (CV)

This relation permits to change from a system 
approach to control volume approach.
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Similar expression adopted by other books:
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Conservation of linear momentum

Newton’s second law of motion for a system is
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Time rate of change of the linear
momentum of the system
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RTT takes the form of

Sum of external forces acting on
the system=

 
 

 volumecontrol
 theof contentssys

sys FF
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md 

V

Since when a control volume coincident with a system at an
instant of time, the forces acting on the system and the forces
acting on the contents of the coincident control volume are
instantaneously identical.
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Conservation of linear momentum

For a control volume (CV) which is fixed and nondeforming, the Newton’s second law of motion
takes the following form:

  
CSCV volumecontrol

 theof contents ˆ dAVdρ
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d
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Time rate of change of
the linear momentum
of the contents of the
control volume (CV)

= Net rate of linear
momentum through
the control surface
(CS)

Force contents of the
control volume (CV) +

    
CSCV

ˆ dAVdρ
dt

d
FF BS nVVV




In fluid mechanics, there are two types of forces are to be considered,

(i) surface force, FS which acts on the surfaces on the CV (pressure and shear stress)

(ii) body force, FB which acts on the mass content of the CV (weight, electromagnetic force, etc.)

Then,

This is known as momentum equation
Or equation of motion in Fluid dynamics

** Vector equation
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Conservation of linear momentum

The momentum equation is a vector equation. Considering 3 components in Cartesian coordinate system
(x, y, z), the momentum equation comes as:
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Applications of linear momentum equations will be discussed in later classes.
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Differential Control Volume Analysis

Now, a differential control volume is considered.
Using this approach, the differential equations can
be obtained which will describe a flow field.

The differential control volume is fixed in space
and bounded by flow streamlines, is thus an
element of a stream tube as shown in Fig. The
length of the control volume is ds.

Because the control volume is bounded by
streamlines, the flow across the bounding surfaces
occurs only at the end sections.

Apply the continuity and momentum equations
considering:

(i) Steady flow
(ii) Inviscid flow (no friction, ideal fluid flow, μ = 0)
(iii) Incompressible flow (density is constant) 
(iv) Irrotational flow (zero vorticity)
(v) Flow along a streamline
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Differential 
control volume

Streamlines

Fig. Differential control volume for momentum analysis 
of flow through a stream tube
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Differential Control Volume Analysis

a. Continuity equation
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product of two differentials dAdVs is
insignificant compared to other terms.

continuity equation for the
differential control volume
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Fig. Differential control volume for momentum analysis 
of flow through a stream tube
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Differential Control Volume Analysis
b. Momentum equation (along steamwise direction)
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Surface force only comes from the pressure (μ = 0):
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(along streamwise direction, s)

(Left face) (Right face) (bounding stream surface)

(average pressure acting on the
bounding surface times the area
component of the stream surface in
s-direction, dA)

dA
dp

pdAdpdAAdppdApApAF
sS 2


= 0 = 0

AdpF
sS


product of two differentials dpdA is
insignificant compared to other terms.
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Fig. Differential control volume for momentum analysis 
of flow through a stream tube
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Differential Control Volume Analysis

Body force acting along s-direction:
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Fig. Differential control volume for momentum analysis 
of flow through a stream tube
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Differential Control Volume Analysis
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Right hand side of momentum equation:
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Differential Control Volume Analysis
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Dividing both sides by ρA:
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Now, momentum equation (along steamwise direction)
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Euler differential equation
for steady inviscid incompressible fluid flow .
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Differential Control Volume Analysis
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Integrate the Euler equation along a streamline:

Bernoulli equation.
(Most famous and mostly used equation in fluid dynamics)

Suffix s can be dropped conveniently (since fluid flows along the streamline)
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Differential Control Volume Analysis
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Bernoulli equation

Pressure head

Velocity head
Potential head

Subjected to the following restrictions in fluid flow:

(i) Steady flow
(ii) Inviscid flow (no friction, ideal fluid flow, μ = 0)
(iii) Incompressible flow (density is constant) 
(iv) Irrotational flow
(v) Flow along a streamline
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Differential Control Volume Analysis
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Considering any two points along a streamline,
Bernoulli Equation yields:


